Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 1,4-Bis[3-chloro-2-(chloromethyl)propyl]benzene

Haitao Xi, Yajun Gao, Xiaoqiang Sun,* Zhijun Ma and Minqiu Xiong

School of Chemistry and Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
Correspondence e-mail: xiaoqiang_sun@yahoo.com.cn

Received 25 December 2008; accepted 7 January 2009

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.040 ; w R$ factor $=0.113 ;$ data-to-parameter ratio $=20.5$.

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{4}$
$V=774.3(6) \AA^{3}$
$M_{r}=328.08$
Monoclinic, $P 2_{1} / c$
$Z=2$
$a=6.518$ (3) A
$b=14.680$ (6) \AA
Mo $K \alpha$ radiation
$\mu=0.75 \mathrm{~mm}^{-1}$
$c=8.433$ (4) A
$\beta=106.335$ (5) ${ }^{\circ}$
$T=291$ (2) K
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2000)

4423 measured reflections 1679 independent reflections 1275 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.066$
$T_{\text {min }}=0.807, T_{\text {max }}=0.842$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 82$ parameters
$w R\left(F^{2}\right)=0.113 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1679 reflections
$\Delta \rho_{\text {max }}=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$

The title molecule, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{4}$, possesses a crystallographically imposed inversion centre, which coincides with the centre of benzene ring. In the absence of classical intermolecular interactions, van der Waals forces help the molecules to pack in the crystal.

Related literature

For related crystal structures, see: Chen et al. (2005); Gao et al. (2009). For general background, see Amabilino \& Stoddart (1995).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of Jiangsu Polytechnic University, the Natural Science Foundation of China (grant No. 20872051) and the Key Laboratory of Fine Petrochemical Engineering of Jiangsu Province (grant No. KF0503).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2502).

References

Amabilino, D. B. \& Stoddart, J. F. (1995). Chem. Rev. 95, 2725-2737.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Chen, A.-H., Wang, Z.-G., Yin, G.-D. \& Wu, A.-X. (2005). Acta Cryst. E61, o3240-o3241.
Gao, Y., Xi, H., Sun, X., Fu, Y. \& Liu, L. (2009). Acta Cryst. E65, o170. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o473 [doi:10.1107/S1600536809000609]

1,4-Bis[3-chloro-2-(chloromethyl)propyl]benzene

H. Xi, Y. Gao, X. Sun, Z. Ma and M. Xiong

Comment

The molecular recognition between a π-electron-rich hydroquinone ring and π-electron-deficient cyclophane has provided the inspiration for the self-assembly of a large number of catenanes (Amabilino \& Stoddart, 1995). In our study of the applications of fused bipyridine cyclophane compounds in the self-assembly of supramolecular systems, we obtained tetraethyl 2, $2^{\prime}-(p$-phenylenedimethylene)dimalonate (Chen et al., 2005), which was used in the synthesis of 2,2'-(p -phenylenedimethylene)bis(propane-1,3-diol) (Gao et al., 2009). The title compound, (I), was obtained by the chlorination of the diol. Herewith we present the crystal structure of (I) (Fig. 1).

Experimental

The 2,2'-(p-phenylenedimethylene)bis(propane-1,3-diol), used in this study, was obtained in accordance with the Gao et al. (2005). In a flame-dryed, round-bottomed flask was placed $\mathrm{SOCl}_{2}(5 \mathrm{~mL})$ and $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2}(0.508 \mathrm{~g}, 2$ mmol) was slowly added under stirring. The mixture was heated up to 333 K . The solvent was evaporated and the resulting oil was chromatographed on a silica-gel column, yielding the title compound ($0.51 \mathrm{~g}, 77 \%$). M.p. 353-354 K.

Refinement

All H atoms were geometrically positioned $(\mathrm{C}-\mathrm{H} 0.93-0.98 \% \mathrm{~A})$ and treated as riding, with $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and 30% probability displacement ellipsoids [symmetry code: (A) $-x,-y+2,-z+1$].

1,4-Bis[3-chloro-2-(chloromethyl)propyl]benzene

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{4}$
$F_{000}=340$
$M_{r}=328.08$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.518$ (3) \AA
$b=14.680(6) \AA$
$c=8.433(4) \AA$
$D_{\mathrm{x}}=1.407 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1607 reflections
$\theta=2.8-26.1^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$

supplementary materials

$\beta=106.335(5)^{\circ}$
$V=774.3(6) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: sealed tube
Monochromator: graphite
$T=291 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.807, T_{\text {max }}=0.842$
4423 measured reflections

Block, colourless
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

1679 independent reflections
1275 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-8 \rightarrow 7$
$k=-18 \rightarrow 14$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.113$
$S=1.09$
1679 reflections
82 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0483 P)^{2}+0.0345 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

The structures were solved with direct methods and refined with full-matrix least-squares techniques using the SHELXTL. The coordinates of the non-hydrogen atoms were refined anisotropically, and the positions of the H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{* /} U_{\text {eq }}$
C1	$0.1873(3)$	$0.97482(12)$	$0.6208(2)$	$0.0415(4)$
C2	$0.0205(4)$	$1.01687(13)$	$0.6634(2)$	$0.0482(5)$
H2	0.0327	1.0284	0.7741	0.058^{*}
C3	$-0.1637(3)$	$1.04196(13)$	$0.5447(3)$	$0.0477(5)$
H3	-0.2733	1.0705	0.5764	0.057^{*}
C4	$0.3901(3)$	$0.94730(13)$	$0.7505(3)$	$0.0489(5)$
H7A	0.3999	0.9812	0.8511	0.059^{*}
H7B	0.5123	0.9638	0.7122	0.059^{*}
C5	$0.4008(3)$	$0.84467(13)$	$0.7898(2)$	$0.0410(4)$
H8	0.3984	0.8123	0.6877	0.049^{*}
C6	$0.6155(3)$	$0.82501(15)$	$0.9136(3)$	$0.0543(5)$
H9A	0.6174	0.8515	1.0194	0.065^{*}
H9B	0.7275	0.8539	0.8764	0.065^{*}
C7	$0.2135(3)$	$0.81085(13)$	$0.8444(2)$	$0.0444(5)$
H10A	0.2273	0.7456	0.8629	0.053^{*}
H10B	0.0828	0.8218	0.7571	0.053^{*}
C11	$0.67066(10)$	$0.70596(4)$	$0.94037(8)$	$0.0736(3)$
C12	$0.19547(9)$	$0.86582(4)$	$1.03025(7)$	$0.0635(2)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0465(11)$	$0.0298(9)$	$0.0488(11)$	$-0.0015(8)$	$0.0141(9)$	$0.0050(8)$
C2	$0.0586(13)$	$0.0437(11)$	$0.0440(11)$	$0.0046(9)$	$0.0172(10)$	$-0.0002(8)$
C3	$0.0535(12)$	$0.0389(11)$	$0.0560(12)$	$0.0063(9)$	$0.0241(10)$	$0.0036(9)$
C4	$0.0424(11)$	$0.0438(11)$	$0.0570(12)$	$-0.0062(8)$	$0.0082(9)$	$0.0026(9)$
C5	$0.0389(10)$	$0.0396(10)$	$0.0443(10)$	$0.0017(8)$	$0.0114(8)$	$-0.0017(8)$
C6	$0.0368(11)$	$0.0513(12)$	$0.0718(14)$	$0.0052(9)$	$0.0101(10)$	$0.0022(10)$
C7	$0.0397(11)$	$0.0414(11)$	$0.0480(11)$	$-0.0012(8)$	$0.0058(9)$	$0.0009(8)$
C11	$0.0629(4)$	$0.0603(4)$	$0.0915(5)$	$0.0227(3)$	$0.0119(3)$	$0.0086(3)$
C12	$0.0614(4)$	$0.0795(4)$	$0.0538(4)$	$0.0101(3)$	$0.0228(3)$	$0.0004(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.382(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.504(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.520(3)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.515(3)$	$\mathrm{C} 5-\mathrm{H} 8$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.380(3)$	$\mathrm{C} 6-\mathrm{Cl} 1$	$1.786(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 6-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$1.382(3)$	$\mathrm{C} 6-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 7-\mathrm{Cl} 2$	$1.796(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.540(3)$	$\mathrm{C} 7-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 7 \mathrm{~A}$	0.9700	$\mathrm{C} 7-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{H} 7 \mathrm{~B}$	0.9700		

supplementary materials

$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	118.01 (19)	C6-C5-C4	108.10 (16)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 4$	120.55 (19)	C7-C5-H8	107.2
C2-C1-C4	121.44 (18)	C6-C5-H8	107.2
C3-C2-C1	121.17 (19)	C4-C5-H8	107.2
C3-C2-H2	119.4	C5-C6-C11	112.74 (15)
C1-C2-H2	119.4	C5-C6-H9A	109.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	120.82 (19)	Cl1-C6-H9A	109.0
C2-C3-H3	119.6	C5-C6-H9B	109.0
C1 ${ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3$	119.6	Cl1-C6-H9B	109.0
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	113.20 (15)	H9A-C6-H9B	107.8
C1-C4-H7A	108.9	C5-C7-C12	112.11 (13)
C5-C4-H7A	108.9	C5-C7-H10A	109.2
C1-C4-H7B	108.9	$\mathrm{Cl} 2-\mathrm{C} 7-\mathrm{H} 10 \mathrm{~A}$	109.2
C5-C4-H7B	108.9	C5-C7-H10B	109.2
H7A-C4-H7B	107.8	$\mathrm{Cl} 2-\mathrm{C} 7-\mathrm{H} 10 \mathrm{~B}$	109.2
C7-C5-C6	113.40 (16)	H10A-C7-H10B	107.9
C7-C5-C4	113.42 (15)		
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.4 (3)	C1-C4-C5-C6	176.91 (17)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.85 (17)	C7-C5-C6-Cl1	64.6 (2)
C1-C2-C3-C1 ${ }^{\text {i }}$	0.4 (3)	C4-C5-C6-Cl1	-168.74 (14)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	-77.5 (2)	C6-C5-C7-Cl2	62.71 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	102.2 (2)	C4-C5-C7-C12	-61.10(19)
C1-C4-C5-C7	-56.4 (2)		
Symmetry codes: (i)			

Fig. 1

